Логико вероятностные методы анализа надежности. Логико-вероятностный метод

Сущность логико-вероятностных методов заключается в использовании функций алгебры логики (ФАЛ) для аналитической записи условий работоспособности системы и переходе от ФАЛ к вероятностным функциям (ВФ), объективно выражающим безотказность системы. Т.е. с помощью логико-вероятностного метода можно описать схемы ИС для расчета надежности с помощью аппарата математической логики с последующим использованием теории вероятностей при определении показателей надежности .

Система может находится только в двух состояниях: в состоянии полной работоспособности (у = 1) и в состоянии полного отказа (у = 0). При этом предполагается, что действие системы детерминировано зависит от действия ее элементов, т.е. у является функцией х 1 , х 2 , … , x i , … , x n . Элементы могут находиться также только в двух несовместных состояниях: полной работоспособности (x i = 1) и полного отказа (x i = 0).

Функцию алгебры логики, связывающую состояние элементов с состоянием системы у (х 1 , х 2 ,…, x n ) называют функцией работоспособности системы F (y )= 1.

Для оценки работоспособных состояний системы используют два понятия:

1) кратчайшего пути успешного функционирования (КПУФ), который представляет собой такую конъюнкцию её элементов, ни одну из компонент которой нельзя изъять, не нарушив функционирования системы. Такая конъюнкция записывается в виде следующей ФАЛ:

где i – принадлежит множеству номеров , соответствующих данному
l -му пути.

Другими словами, КПУФ системы описывает одно из её возможных работоспособных состояний, которое определяется минимальным набором работоспособных элементов, абсолютно необходимых для выполнения заданных для системы функций.

2) минимального сечения отказов системы (МСО) представляющего собой такую конъюнкцию из отрицаний её элементов, ни одну из компонент которой нельзя изъять, не нарушив условия неработоспособности системы. Такую конъюнкцию можно записать в виде следующей ФАЛ:

где означает множество номеров, соответствующих данному сечению.

Другими словами, МСО системы описывает один из возможных способов нарушения работоспособности системы с помощью минимального набора отказавших элементов.

Каждая избыточная система имеет конечное число кратчайших путей (l = 1, 2,…, m ) и минимальных сечений (j = 1, 2,…, m ).

Используя эти понятия можно записать условия работоспособности системы.

1) в виде дизъюнкции всех имеющихся кратчайших путей успешного функционирования.

;

2) в виде конъюнкции отрицаний всех МСО

;

Таким образом, условия работоспособности реальной системы можно представить в виде условий работоспособности некоторой эквивалентной (в смысле надежности) системы, структура которой представляет параллельное соединение кратчайших путей успешного функционирования, или другой эквивалентной системы структура которой представляет соединение отрицаний минимальных сечений.

Например, для мостиковой структуры ИС функция работоспособности системы с помощью КПУФ запишется следующим образом:

;

функцию работоспособности этой же системы через МСО можно записать в следующем виде:

При небольшом числе элементов (не более 20) может быть использован табличный метод расчета надежности, который основан на использовании теоремы сложения вероятностей совместных событий.

Вероятность безотказной работы системы можно вычислить по формуле (через вероятностную функцию вида):

Логико-вероятностные методы (методы: разрезания, табличный, ортогонализации) широко применяют в диагностических процедурах при построении деревьев отказов и определении базисных (исходных) событий, вызывающих отказ системы.

Для надежности компьютерной системы со сложной структурой резервирования может быть использован метод статистического моделирования.

Идея метода заключается в генерировании логических переменных x i c заданной вероятностью pi возникновения единицы, которые подставляются в логическую структурную функцию моделируемой системы в произвольной форме и затем вычисляется результат.

Совокупность х 1 , х 2 ,…, х n независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий p (x i ), причем .

Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале

Значение p i выбирается равным вероятности безотказной работы i -й подсистемы. При этом процесс вычисления повторяется N 0 раз с новыми, независимыми случайными значениями аргументов x i (при этом подсчитывается количество N (t ) единичных значений логический структурной функции). Отношение N (t )/N 0 является статистической оценкой вероятности безотказной работы

где N (t ) – количество безотказно работающих до момента времени t объектов, при их исходном количестве.

Генерирование случайных логических переменных x i с заданной вероятностью появления единицы р i осуществляется на основании равномерно распределенных в интервале случайных величин, получаемых с помощью стандартных программ, входящих в математическое обеспечение всех современных компьютеров.

1. Назовите метод оценки надежности ИС, где вероятность безотказной работы системы определяется как Р н ≤Р с ≤Р в .

2. Для расчета надежности каких систем используется метод путей и сечений?

3. С помощью какого метода можно оценить надежность устройств мостикового типа?

4. Какие методы определения показателей надежности восстанавливаемых систем известны?

5. Структурно представьте мостиковую схему набором минимальных путей и сечений.

6. Дайте определение минимального пути и минимального сечения.

7. Запишите функцию работоспособности для устройства с разветвленной структурой?

8. Что называется функцией работоспособности?

9. Что такое кратчайший путь успешного функционирования (КПУФ). Запишите условия работоспособности в виде КПУФ.

10. Где используется логико-вероятностный метод оценки надежности?

Литература: 1, 2, 3, 5, 6, 8.


Тема: Расчет надежности восстанавливаемых систем (метод дифференциальных уравнений)

1. Общие методы расчета надежности восстанавливаемых систем.

2. Построение графа возможных состояний системы для оценки надежности восстанавливаемых систем.

3. Метод систем дифференциальных уравнений (СДУ), правило Колмогорова для составления СДУ

4. Нормировочные и начальные условия для решения СДУ.

Ключевые слова

Восстанавливаемая система, количественные характеристики надежности, граф состояний, работоспособное состояние, система дифференциальных уравнений, правило Колмогорова, вероятность безотказной работы, интенсивность восстановления, интенсивность отказа нормировочные условия, начальные условия, параметры надежности, нерезервированная система.

Основной задачей расчета надежности проектируемых ИС является построение математических моделей адекватных вероятностным процессам их функционирования. Эти модели позволяют оценить степень удовлетворения требований по надежности к проектируемым или эксплуатируемым системам.

Вид математической модели определяет возможность получения расчетных формул. Для проведения расчета надежности восстанавливаемых резервированных и нерезервированных систем используются: метод интегральных уравнений, метод дифференциальных уравнений, метод переходных интенсивностей, метод оценки надежности по графу возможных состояний и др. .

Метод интегральных уравнений . Метод интегральных уравнений является наиболее общим, его можно применять при расчете надежности любых (восстанавливаемых и невосстанавливаемых) систем при любых распределениях ВБР и времени восстановления.

В этом случае для определения показателей надежности системы составляют и решают интегральные и интегро-дифференциальные уравнения, связывающие характеристики распределения ВБР, а для восстанавливаемых систем – и время восстановления элементов.

В ходе составления интегральных уравнений обычно выделяют один или несколько бесконечно малых интервалов времени, для которых рассматривают сложные события, проявляющие при совместном действии нескольких факторов.

В общем случае решения находят численными методами с помощью компьютера. Метод интегральных уравнений не получил широкого распространения из-за трудности решения .

Метод дифференциальных уравнений . Метод применяется для оценки надежности восстанавливаемых объектов и основан на допущении о показательных распределениях времени между отказами (наработки) и времени восстановления. При этом параметр потока отказов w = λ = 1/t cp . и интенсивность восстановления µ = 1/t в , где t cp . – среднее время безотказной работы, t в – среднее время восстановления.

Для применения метода необходимо иметь математическую модель для множества возможных состояний системы S = {S 1 , S 2 ,…, S n }, в которых она может находиться при отказах и восстановлениях системы. Время от времени система S скачком переходит из одного состояния в другое под действием отказов и восстановлений ее отдельных элементов.

При анализе поведения системы во времени в процессе износа удобно пользоваться графом состояний. Граф состояний – это направленный граф, где кружками или прямоугольниками изображают возможные состояния системы. Он содержит столько вершин, сколько различных состояний возможно у объекта или системы. Ребра графа отражают возможные переходы из некоторого состояния во все остальные с параметрами интенсивностей отказов и восстановлений (около стрелок показаны интенсивности переходов).

Каждой комбинации отказовых и работоспособных состояний подсистем соответствует одно состояние системы. Число состояний системы n = 2 k , где k – количество подсистем (элементов).

Связь между вероятностями нахождения системы во всех его возможных состояниях выражается системой дифференциальных уравнений Колмогорова (уравнений первого порядка).

Структура уравнений Колмогорова построена по следующим правилам: в левой части каждого уравнения записывается производная вероятности нахождения объекта в рассматриваемом состоянии (вершине графа), а правая часть содержит столько членов, сколько ребер графа состояний связано с этой вершиной. Если ребро направлено из данной вершины, соответствующий член имеет знак минус, если в данную вершину – знак плюс. Каждый член равен произведению параметра интенсивности отказа (восстановления), связанного с данным ребром, на вероятность нахождения в той вершине графа, из которой исходит ребро.

Система уравнений Колмогорова включает столько уравнений, сколько вершин в графе состояний объекта.

Система дифференциальных уравнений дополняется нормировочным условием:

где P j (t j -м состоянии;

n – число возможных состояний системы.

Решение системы уравнений при конкретных условиях дает значение искомых вероятностей P j (t ).

Все множество возможных состояний системы разбивается на две части: подмножество состояний n 1 , в которых система работоспособна, и подмножество состояний n 2 , в которых система неработоспособна.

Функция готовности системы:

К г ,

где P j (t ) – вероятность нахождения системы в j работоспособном состоянии;

n 1 – число состояний в которых система работоспособна.

Когда необходимо вычислить коэффициент готовности системы или коэффициент простоя (перерывы в работе системы допустимы), рассматривают установившийся режим эксплуатации при t→∞ . При этом все производные и система дифференциальных уравнений переходят в систему алгебраических уравнений, которые легко решаются.

Пример графа состояний нерезервированной восстанавливаемой системы с n – элементами приведен на рис. 1.

Рис. 1. Граф состояний восстанавливаемой системы (штриховкой отмечены неработоспособные состояния)

Рассмотрим возможные состояния в которых может находиться система. Здесь возможны следующие состояния:

S 0 – все элементы работоспособны;

S 1 – первый элемент неработоспособен остальные работоспособны;

S 2 – второй элемент неработоспособен остальные работоспособны;

S n n -й элемент неработоспособен остальные работоспособны.

Вероятность одновременного появления двух неработоспособных элементов пренебрежимо мала. Символами λ 1 , λ 2 ,…, λ n обозначены интенсивности отказов, µ 1 , µ 2 ,…, µ n интенсивности восстановления соответствующих элементов;

По графу состояний (рис. 1) составляют систему дифференциальных уравнений (уравнение для состояния S 0 опускаем из-за громоздкости):

С нормировочным условием: .

Начальные условия:

При установившемся режиме эксплуатации (при t →∞) имеем:

Решив полученную систему алгебраических уравнений с учетом нормировочного условия, находим показатели надежности.

При решении системы уравнений можно использовать преобразование Лапласа для вероятностей состояний или численные методы.

Контрольные вопросы и задания

1. Какие методы определения показателей надежности восстанавливаемых систем известны?

2. Как определяются состояния элементов и устройств ИС?

3. Как определить области работоспособных состояний системы?

4. Почему метод дифференциальных уравнений получил широкое распространение при оценке надежности восстанавливаемых систем?

5. Что является необходимым условием при решении систем дифференциальных уравнений?

6. Как составляется дифференциальные уравнения для определения параметров надежности ИС?

7. Каким условием должно быть дополнено система дифференциальных уравнений (СДУ) для более эффективного решения.

8. Запишите условия работоспособности системы, состоящий из трех элементов.

9. Чему равно число состояний устройства состоящего из четырех элементов?

10. Какое правило используется при составлении СДУ?

Литература: 1, 2, 3, 5, 6, 8.


Тема: Марковские модели для оценки надежности резервированных восстанавливаемых информационных систем

1. Понятие Марковского свойства, определение состояния системы.

2. Методика и алгоритм построения Марковской модели.

3. Расчетные формулы для расчета показатели надежности ТС

4. Матрица интенсивностей переходов для оценки показателей надежности резервированных восстанавливаемых ИС.

Ключевые слова

Марковская модель, состояние системы, работоспособность, матрица интенсивностей переходов, граф состояний, восстанавливаемая система, резервирование, последовательная схема, постоянный резерв, система дифференциальных уравнений, правило Колмогорова, схема расчета надежности, приближенный метод, алгоритмы построения СДУ, нормировочные условия, начальные условия, вероятность безотказной работы, интенсивность отказа.

Функционирование ИС и их составных частей можно представить как совокупность процессов перехода из одного состояния в другое под воздействием каких либо причин.

С точки зрения надежности восстанавливаемых ИС их состояние в каждый момент времени характеризуется тем, какие из элементов работоспособны, а какие восстанавливаются.

Если каждому возможному множеству работоспособных (неработоспособных) элементов поставить в соответствие множество состояний объекта, то отказы и восстановления элементов будут отображаться переходом объекта из одного состояния в другое:

Пусть, к примеру, объект состоит из двух элементов. Тогда он может находиться в одном из четырех состояний: n = 2 k = 2 2 = 4.

S 1 – оба элемента работоспособны;

S 2 – неработоспособен только первый элемент;

S 3 – неработоспособен только второй элемент;

S 4 – неработоспособны оба элемента.

Множество возможных состояний объекта: S = {S 1 , S 2 , S 3 , S 4 }.

Полное множество состояний исследуемой системы может быть дискретным, либо непрерывным (непрерывно заполнять один или несколько интервалов числовой оси).

В дальнейшем будем рассматривать системы с дискретным пространством состояний. Последовательность состояний такой системы и сам процесс переходов из одного состояния в другое называется цепью.

В зависимости от времени пребывания системы в каждом состоянии различают процессы с непрерывным временем и процессы с дискретным временем. В процессах с непрерывным временем переход системы из одного состояния в другое осуществляется в любой момент времени. Во втором случае время пребывания системы в каждом состоянии – фиксировано так, что моменты переходов размещаются на временной оси через равные промежутки.

В настоящее время наиболее изучены цепи, обладающие марковским свойством. Вероятности переходов обозначаются символами P ij (t ), а процесс P ij переходов называется Марковской цепью или цепью Маркова.

Марковское свойство связанно с отсутствием последействия. Это означает, что поведение системы в будущем зависит только от ее состояния в данный момент времени, и не зависит от того каким образом она пришла в это состояние.

Марковские процессы позволяют описать последовательности отказов-восстановлений в системах, описываемых при помощи графа состояний.

Наиболее часто для расчета надежности применяется метод марковских цепей с непрерывным временем, основанный на системе дифференциальных уравнений, которая в матричной форме может быть записана как:

,

где P (t ) = P 0 – начальные условия;

,

а Λ – матрица интенсивности переходов (матрица коэффициента при вероятностях состояний):

где λ ij – интенсивности перехода системы из i-го состояния в j-е;

P j – вероятность того, что система находится в j-м состоянии.

При оценке надежности сложных резервированных и восстанавливаемых систем метод марковских цепей приводит к сложным решениям из-за большого числа состояний. В случае однотипных подсистем работающих в одинаковых условиях, для уменьшения числа состояний используют метод укрупнения. Состояния с одинаковым количеством подсистем объединяются. Тогда размерность уравнений уменьшается .

Последовательность методики оценки надежности резервированных восстанавливаемых систем с использованием метода марковских цепей следующая:

1. Анализируется состав устройства и составляется структурная схема надежности. По схеме строится граф, в котором учитывается все возможные состояния;

2. Все вершины графа в результате анализа структурной схемы разделяются на два подмножества: вершины соответствующие работоспособному состоянию системы и вершины соответствующие неработоспособному состоянию системы.

3. С помощью графа состояний составляется система дифференциальных уравнений (используется правило Колмогорова);

4. Выбираются начальные условия решения задачи;

5. Определяются вероятности нахождения системы в работоспособном состоянии в произвольный момент времени;

6. Определяется вероятность безотказной работы системы;

7. В случае необходимости определяются и другие показатели.

Контрольные вопросы и задания

1. Что подразумевается под цепью Маркова?

2. Приведите алгоритм оценки надежности ИС с использованием Марковских моделей.

3. Как составляется дифференциальные уравнения для определения параметров надежности ИС?

4. Значение каких показателей надежности можно получить используя Марковский метод?

5. Перечислите основные этапы построения Марковской модели надежности сложной системы.

6. Что является необходимым условием при решении систем дифференциальных уравнений?

7. Как определяются состояния элементов и устройств КС?

8. Дайте определение понятию восстанавливаемых систем.

9. Что такое Марковская цепь?

10. Для оценки каких систем используют Марковские модели надежности?

Литература: 1, 2, 3, 10, 11.


Тема: Приближенные методы расчета надежности технических средств ИС

1. Основные допущение и ограничения при оценки надежности последовательно-параллельных структур.

2. Приближенные методы расчета надежности восстанавливаемых ИС, при последовательном и параллельном включении подсистем ИС.

3. Структурные схемы расчета надежности ИС.

Ключевые слова

Надежность, последовательно-параллельная структура, приближенные методы расчета надежности, структурное схема расчета надежности, интенсивность отказа, интенсивность восстановления, коэффициент готовности, время восстановления, компьютерная система.

ДЕТЕРМИНИРОВАННЫЕ РАЗДЕЛЫ ОБЩЕГО ЛОГИКО-ВЕРОЯТНОСТНОГО МЕТОДА

Аннотация. Приведены результаты систематизации данных о существующих и новых научных разработках вопросов детерминированного моделирования в общем логико-вероятностном методе (ОЛВМ), теории и технологии автоматизированного структурно-логического моделирования (АСМ).

Ключевые слова . Общий логико-вероятностный метод, схема функциональной целостности, вероятностные модели, детерминированное моделирование.

Введение. Исторически сложилось так, что все логико-вероятностные методы разрабатывались и использовались в целях моделирования и расчета вероятностных показателей различных свойств системных объектов (надежность, стойкость, живучесть, устойчивость, безопасность, технический риск, ожидаемый ущерб, эффективность). Однако в последние годы, наряду с дальнейшим расширением круга задач вероятностного анализа, все более востребованными становятся вопросы разработки методов и программных средств детерминированного моделирования структурно сложных систем различных видов, классов и назначения. В настоящем сообщении приведены результаты систематизации данных о существующих и новых научных и технологических разработках вопросов детерминированного моделирования в рамках общего логико-вероятностного метода (ОЛВМ) , теории и технологии автоматизированного структурно-логического моделирования (АСМ) .

1. Детерминированные методы аналитического ОЛВМ.

Следует отметить, что все логико-вероятностные методы системного анализа имеют четко выраженные детерминированные составляющие на всех основных этапах моделирования. На этапе постановки задач к детерминированным относятся все виды графических средств и методики построения структурных моделей исследуемых свойств – деревья отказов, деревья событий, блок-схемы, графы связности, схемы функциональной целостности и др. На следующих этапах логико-вероятностного моделирования детерминированными являются методы, алгоритмы и программы построения на основе заданной структурной схемы логических и вероятностных (точных или приближенных) математических моделей исследуемых свойств системы. На завершающем этапе ОЛВМ детерминированными выступают методы и процедуры вычислений вероятностных показателей свойств систем, на основе построенных точных или приближенных аналитических вероятностных функциях.

В рамках существующих отечественных и зарубежных типовых монотонных логико-вероятностных методов системного анализа были разработаны и успешно применяются различные точные и приближенные средства (методы, алгоритмы и программы) построения на основе деревьев отказов, блок-схем или графов связности детерминированных логических функций работоспособности систем (ФРС) и многочленов вероятностных функций (ВФ).

В ОЛВМ эти виды аналитических моделей строятся на основе логически универсального графического аппарата структурных схем функциональной целостности (СФЦ) . Детерминированные ФРС и ВФ определяются в ОЛВМ для всех видов монотонных и немонотонных моделей исследуемых свойств систем большой размерности и высокой структурной сложности . Для построения логических ФРС в ОЛВМ был разработан универсальный графоаналитический метод (УГМ) , а для построения многочленов ВФ – комбинированный метод . Эти методы доведены до программной реализации и используются в промышленных образцах программных комплексов автоматизированного структурно-логического моделирования систем .

Для иллюстрации детерминированного аналитического ОЛВМ рассматривается простой тестовый пример анализа типовой мостиковой системы . В левой части рис.1 изображена СФЦ мостиковой системы, введенная в программный комплекс (ПК) АСМ 2001, и соответствующая ей полная система логических уравнений. В примере решены три детерминированные задачи – построения логической ФРС, построения многочлена ВФ и аналитического расчета вероятности реализации критерия частичного отказа (частичной работоспособности) мостиковой системы (выходной элемент 3 выполнил, а выходной элемент 4 не выполнил свою функцию).

Рис.1 Тестовый пример применения детерминированного аналитического ОЛВМ

В правой части рис.1 приведены результаты применения УГМ для получения логической ФРС и комбинированного метода для построения многочлена ВФ. Аналитический расчет вероятности частичной работоспособности мостиковой системы выполнен для случая, когда вероятности всех элементарных событий равны .

В настоящее время продолжаются работы по дальнейшему совершенствованию методов детерминированного аналитического ОЛВМ. Вместе с тем, в последние годы произошло становление и развитие ряда новых специальных направлений детерминированного ОЛВМ анализа систем.

2. Детерминированные методы статистического ОЛВМ.

В статистическом логико-вероятностном моделировании детерминированными являются средства построения имитационных моделей исследуемых свойств структурно-сложных систем. На основе сформированных имитационных моделей методами статистических испытаний определяются количественные оценки вероятностных показателей исследуемых свойств системы. Первый логико-статистический метод (ЛСМ), разработанный И.А.Рябининым , в качестве имитационной модели использует логическую ФРС исследуемой системы. В ОЛВМ и ПК АСМ реализован другой – итерационный логико-статистический метод (ИЛСМ), разработанный Алексеевым А.О . ИЛСМ в качестве детерминированной имитационной модели использует непосредственно СФЦ исследуемой системы, которая представляется в форме монотонной или немонотонной системы логических уравнений. Это позволяет в статистическом ОЛВМ вообще не выполнять построения детерминированных аналитических моделей (ни ФРС, ни ВФ).

На рис.2 приведено окно автоматизированного моделирования ПК АСМ 2001 с результатами расчетов разными способами вероятностных показателей частичной работоспособности рассмотренной выше мостиковой системы (см. рис.1).

Рис.2 Результаты применения детерминированного метода статистического ОЛВМ

Из рис.2 следует, что с помощью детерминированного ОЛВМ автоматического формирования имитационной модели и выполнения на ее основе статистических расчетов вероятности частичной работоспособности мостиковой системы получен результат

Этот результат статистического ОЛВМ вполне согласуется с полученным

ЛОГИКО-ВЕРОЯТНОСТНЫЕ МЕТОДЫ АНАЛИЗА НАДЕЖНОСТИ

Любой метод анализа надежности требует описания условий работоспособности системы. Такие условия могут быть сформулированы на основании:

Структурной схемы функционирования системы (схемы расчета надежности);

Словесного описания функционирования системы;

Граф-схемы;

Функции алгебры логики.

Логико-вероятностный метод анализа надежности позволяет формализовать определение и смысл благоприятных гипотез. Сущность этого метода состоит в следующем.

· Состояние каждого элемента кодируется нулем и единицей:

В функциях алгебры логики состояния элементов представляются в следующем виде:

Х i - исправное состояние элемента, соответствующее коду 1;

Отказовое состояние элемента, соответствующее коду 0.

Записывается с помощью функций алгебры логики условие работоспособности системы через работоспособность (состояние) ее элементов. Полученная функция работоспособности системы является двоичной функцией двоичных, аргументов.

Полученная ФАЛ преобразуется таким образом, чтобы в ней содержались члены, соответствующие благоприятным гипотезам исправной работы системы.

В ФАЛ вместо двоичных переменных х i и подставляются вероятности соответственно безотказной работы р i и вероятности отказа q i . Знаки конъюнкции и дизъюнкции заменяются алгебраическими умножением и сложением.

Полученное выражение и есть вероятность безотказной работы системы P c (t).

Рассмотрим логико-вероятностный метод на примерах.

ПРИМЕР 5.10. Структурная схема системы представляет собой основное (последовательное) соединение элементов (рис. 5.14).

На структурной схеме х i , i = 1, 2,..., п - состояние i -го элемента системы, кодируемое 0, если элемент находится в отказовом состоянии, и 1, если он исправный. В данном случае система исправна, если исправны все ее элементы. Тогда ФАЛ является конъюнкцией логических переменных, т.е. у=x 1 ,x 2 ,…..,х п, представляющей собой совершенную дизъюнктивно нормальную форму системы.

Подставляя вместо логических переменных вероятности исправных состояний элементов и, заменяя конъюнкцию на алгебраическое умножение, получим:

ПРИМЕР 5.11. Структурная схема системы представляет собой дублированную систему с неравнонадежными, постоянно включенными подсистемами (рис. 5.15).

На рис. 5.15 х 1 и х 2 - состояния элементов системы. Составим таблицу истинности двух двоичных переменных (табл. 5.2).

В таблице 0 - отказовое состояние элемента, 1 - исправное состояние элемента. В данном случае система исправна, если исправны оба элемента (1,1) или один из них ((0,1) или (1,0)). Тогда работоспособное состояние системы описывается следующей функцией алгебры логики:



Этафункция является совершенной дизъюнктивной нормальной формой. Заменяя операции дизъюнкции и конъюнкции на алгебраические операции умножения и сложения, а логические переменные - на соответствующие вероятности состояния элементов, получим вероятность безотказной работы системы:

ПРИМЕР 5.12. Структурная схема системы имеет вид, показанный на рис. 5.16.

Составим таблицу истинности (табл. 53).

В данном примере система исправна, если исправны все ее элементы или исправным является элемент x i и один из элементов дублированной пары (х 2 , х 3 ). На основании таблицы истинности СДНФ будет иметь вид:

Подставляя вместо двоичных переменных соответствующие вероятности, а вместо конъюнкций и дизъюнкций - алгебраические умножение и сложение, получим вероятность безотказной работы системы:

Функцию алгебры логики можно представить в минимальной форме, если воспользоваться следующими преобразованиями:

Операции поглощения и склеивания в алгебре не применимы. В связи с этим нельзя полученную ФАЛ минимизировать, а затем вместо логических переменных подставлять значения вероятностей. Вероятности состояний элементов следует подставлять в СДНФ, а упрощать по правилам алгебры.

Недостатком описанного метода является необходимость составления таблицы истинности, что требует перебора всех работоспособных состояний системы.

5.3.2. Метод кратчайших путей и минимальных сечений

Этот метод был рассмотрен ранее в разд. 5.2.3. Изложим его с позиции алгебры логики.

Функцию работоспособности можно описать с помощью кратчайших путей пешного функционирования системы и минимальных сечений ее отказа.

Кратчайшим путем называется минимальная конъюнкция работоспособных:стояний элементов, образующих работоспособную систему.

Минимальным сечением называется минимальная конъюнкция неработоспособных состояний элементов, образующих неработоспособное состояние системы.

ПРИМЕР 5.13. Необходимо образовать функцию работоспособности системы структурная схема которой приведена на рис. 5.17, используя метод кратчайших путей и минимальных сечений.

Решение. В данном случае кратчайшими путями, образующими работоспособную систему, будут: х 1 х 2 , х 3 х 4 , х 1 х 5 х 4 , х 3 х 5 х 2 . Тогда функция работоспособности запишется в виде следующей функции алгебры логики:

В соответствии с этой ФАЛ структурная схема системы рис. 5.17 может быть представлена структурной схемой рис. 5.18.

Минимальными сечениями, образующими неработоспособную систему, будут: х 1 х 3 , х 2 х 4 , х 1 х 5 х 4 , х 3 х 5 х 2 . Тогда функция неработоспособности запишется в виде следующей функции алгебры логики:

В соответствии с этой ФАЛ структурная схема системы будет представлена в виде, показанном на рис. 5.19.

Следует иметь в виду, что структурные схемы рис. 5.18 и рис. 5.19 не являются схемами расчета надежности, а выражения для ФАЛ работоспособного и неработоспособного состояний не являются выражениями для определения вероятности безотказной работы и вероятности отказа:

Основные достоинства ФАЛ в том, что они позволяют получить формально, не составляя таблицы истинности, СДНФ и СКНФ (совершенная конъюнктивная нормальная форма), которые дают возможность получить вероятность безотказной работы (вероятность отказа) системы путем подстановки в ФАЛ вместо логических переменных соответствующих значений вероятностей безотказной работы, заменив операции конъюнкции и дизъюнкции на алгебраические операции умножения и сложения.

Для получения СДНФ необходимо каждый дизъюнктивный член ФАЛ умножить на, где х i - недостающий аргумент, и раскрыть скобки. Ответом будет СДНФ. Рассмотрим этот способ на примере.

ПРИМЕР 5.14. Необходимо определить вероятность безотказной работы системы, структурная схема которой приведена на рис. 5.17. Вероятности безотказной работы элементов равны р 1 , р 2 , р 3 , р 4 , р 5 .

Решение. Воспользуемся методом кратчайших путей. Функция алгебры логики, полученная методом кратчайших путей, имеет вид:

Получим СДНФ системы. Для этого умножим дизъюнктивные члены на недостающие:

Раскрывая скобки и выполняя преобразования по правилам алгебры логики, получим СДНФ:

Подставляя в СДНФ вместо х 1 , х 2 , х 3 , х 4 , х 5 вероятности безотказной работы р 1 , р 2 , р 3 , р 4 , р 5 и используя соотношения q i = 1–р i , получим следующее выражение для вероятности безотказной работы системы.

Из приведенного примера видно, что метод кратчайших путей освободил нас от определения благоприятных гипотез. Тот же результат можно получить, если воспользоваться методом минимальных сечений.

5.3.3. Алгоритм разрезания

Алгоритм разрезания позволяет получить ФАЛ, подставляя в которую вместо логических переменных вероятности безотказной работы (вероятности отказа) элементов можно найти вероятность безотказной работы системы. Получения для этой цели СДНФ не требуется.

Алгоритм разрезания основан на следующей теореме алгебры логики: функция алгебры логики у(х ь х 2 ,...,х п) может быть представлена в следующей форме:

Покажем применимость этой теоремы на трех примерах:

Применяя второй распределительный закон алгебры логики, получим:

ПРИМЕР 5.15. Определить вероятность безотказной работы системы, струк­турная схема которой представлена на рис. 5.16, воспользовавшись алгоритмом разрезания.

Решение. Используя метод кратчайших путей, получим следующую ФАЛ:

Применим алгоритм разрезания:

Подставляя теперь вместо логических переменных вероятности и заменяя операции конъюнкции и дизъюнкции на алгебраические умножение и сложение, получим:

ПРИМЕР 5.16. Определить вероятность безотказной работы системы, структурная схема которой приведена на рис. 5.17. Воспользоваться алгоритмом разрезания.

Решение. Функция алгебры логики, полученная методом минимальных сечений, имеет вид:

Реализуем алгоритм разрезаний относительно х 5:

Упростим полученное выражение, пользуясь правилами алгебры логики. Вы-ражение в первых скобках упростим, используя правило выноса за скобки:

Тогда ФАЛ будет иметь вид:

Этому выражению соответствует структурная схема рис. 5.20.

Полученная схема является также схемой расчета надежности, если логические переменные заменить вероятностями безотказной работы р 1 , р 2 , р 3 , р 4 , р 5 , а переменную - вероятностью отказа q 5 . Из рис. 5.20 видно, что структурная схема системы сведена к последовательно-параллельной схеме. Вероятность безотказной работы вычисляется по следующей формуле:

Формула в объяснении не нуждается, она записана непосредственно по структурной схеме.

5.3.4. Алгоритм ортогонализации

Алгоритм ортогонализации, как и алгоритм разрезания, позволяет формальными процедурами образовать функцию алгебры логики, подставляя в которую вместо логических переменных вероятности, а вместо дизъюнкций и конъюнкции - алгебраические сложение и умножение, получить вероятность безотказной работы системы. Алгоритм основан на преобразовании функций алгебры логики в ортогональную дизъюнктивную нормальную форму (ОДНФ), которая существенно короче СДНФ. Прежде чем излагать методику, сформулируем ряд определений и приведем примеры.

Две конъюнкции называются ортогональными, если их произведение тождественно ноль. Дизъюнктивная нормальная форма называется ортогональной, если все ее члены попарно ортогональны. СДНФ является ортогональной, но самой длинной из всех ортогональных функций.

Ортогональную ДНФ можно получить с помощью следующих формул:

Эти формулы легко доказать, если воспользоваться вторым распределительным законом алгебры логики и теоремой де-Моргана. Алгоритмом получение ортогональной дизъюнктивной нормальной формы является следующая процедура преобразования функции у(х 1 ,х 2 ,..., х п) в ОДНФ:

Функция у(х 1 ,х 2 ,..., х п) преобразуется в ДНФ с помощью метода кратчайших путей или минимальных сечений;

Находится ортогональная дизъюнктивно-нормальная форма с помощью формул (5.10) и (5.11);

Минимизируется функция путем приравнивания к нулю ортогональных членов ОДНФ;

Логические переменные заменяются вероятностями безотказной работы (вероятностями отказов) элементов системы;

Окончательное решение получается после упрощения выражения, полученного на предыдущем шаге.

Рассмотрим методику на примере.

ПРИМЕР 5.17. Определить вероятность безотказной работы системы, струк­турная схема которой приведена на рис. 5.17. Применить метод ортогонализации.

Решение. В данном случае функционирование системы описывается следующей функцией алгебры логики (метод минимальных сечений):

Обозначим К 1 = х 1 х 2 , К 2 = х 3 х 4 , К 3 = х 1 х 5 х 4 , К 4 = х 3 х 5 х 2 . Тогда ОДНФ запишется в следующем виде:

Значения , i = 1,2,3, на основании формулы (5.10) будут иметь вид:

Подставляя эти выражения в (5.12), получим:

Заменяя в этом выражении логические переменные соответствующими вероятностями и выполняя алгебраические операции сложения и умножения, по­лучим вероятность безотказной работы системы:

Ответ совпадает с полученным в примере 5.14.

Из примера видно, что алгоритм ортогонализации более производительный, чем способы, рассмотренные ранее. Более подробно логико-вероятностные методы анализа надежности изложены в . Логико-вероятностный метод, как и любой другой, имеет свои достоинства и недостатки. О его достоинствах было сказано ранее. Укажем его недостатки.

Исходными данными в логико-вероятностном методе являются вероятности безотказной работы элементов структурной схемы системы. Однако во мно­гих случаях эти данные не могут быть получены. И не потому, что надежность элементов неизвестна, а потому, что время функционирования элемента является случайной величиной. Это имеет место в случае резервирования замещением, наличия последействия отказов, неодновременноcти работы элементов, наличия восстановления с различной дисциплиной обслуживания и во многих других случаях.

Приведем примеры, иллюстрирующие эти недостатки. Структурная схема системы имеет вид, показанный на рис. 5.21, где приняты следующие обозначения: x i - логические переменные, имеющие значения 0 и 1, соответствующие отказу и исправной работе элемента, x i = 1, 2, 3.

В данном случае логическая переменная дс 3 является 0 до момента времени τ отказа основного элемента и 1 в течение времени (t-τ), где t - врем, в течение которого определяется вероятность безотказной работы системы. Время τ является величиной случайной, поэтому значение р(τ) неизвестно. В данном случае составить ФАЛ и тем более СДНФ невозможно. Ни один израссмотренных нами логико-вероятностных методов не позволяет найти вероятность безотказной работы системы.

Вот еще один типичный пример. Энергетическая система состоит из регулятора напряжения R н и двух параллельно работающих генераторов Г 1 и Г 2 . Структурная схема системы показана на рис. 5.22.

При отказе одного из генераторов оставшийся исправным работает один общую нагрузку. Его интенсивность отказов увеличивается. Если до момента τ отказа одного из генераторов интенсивность его отказа была равна λ , то после отказа λ 1 > λ 2 . Так как время τ является величиной случайной, то Р(τ) неизвестно. Здесь, как и в случае резервирования замещением, логико-вероятностные методы бессильны. Таким образом, указанные недостатки логико-вероятностных методов снижают их практическое применение при расчете надежности сложных систем.

5.4. Топологические методы анализа надежности

Топологическими будем называть методы, которые позволяют определить показатели надежности либо по графу состояний, либо по структурной схеме системы, не составляя и не решая уравнений. Топологическим методам посвящен ряд работ , в которых описаны различные способы их практической реализации. В настоящем разделе излагаются методы, позволяющие определить показатели надежности по графу состояний.

Топологические методы дают возможность вычислять следующие показатели надежности:

- Р(t) - вероятность безотказной работы в течение, времени t ;

- T 1 , - среднее время безотказной работы;

- К г (t) - функцию готовности (вероятность того, что система исправна в любой произвольный момент времени t );

- К г = - коэффициент готовности;

T - наработку на отказ восстанавливаемой системы.

Топологические методы имеют следующие особенности:

Простота вычислительных алгоритмов;

Высокая наглядность процедур определения количественных характери­стик надежности;

Возможность приближенных оценок;

Отсутствие ограничений на вид структурной схемы (системы, восстанавливаемые и невосстанавливаемые, нерезервированные и резервированные с любым видом резервирования и любой кратностью).

В настоящей главе будут рассматриваться ограничения топологических методов:

Интенсивности отказов и восстановления элементов сложной системы являются величинами постоянным»;

Временные показатели надежности, такие как вероятность безотказной работы и функция готовности, определяются в преобразованиях Лапласа;

Трудности, в ряде случаев непреодолимые, при анализе надежности сложных систем, описываемых многосвязным графом состояний.

Идея топологических методов состоит в следующем.

Граф состояний является одним из способов описания функционирования системы. Он определяет вид дифференциальных уравнений и их количество. Интенсивности переходов, характеризующие надежность элементов и их восстанавливаемость, определяют коэффициенты дифференциальных уравнений. Начальные условия выбираются кодированием узлов графа.

В графе состояний содержится вся информация о надежности системы. А это является основанием считать, что показатели надежности могут быть вычислены непосредственно по графу состояний.

5.4.1. Определение вероятностей состояний системы

Вероятность застать восстанавливаемую систему в состоянии i в фиксированный момент времени t в преобразовании Лапласа может быть записана в следующем виде:

где Δ(s) - главный определитель системы дифференциальных уравнений, записанной в преобразованиях Лапласа; Δ i (s) - частный определитель системы.

Из выражения (5.13) видно, что P i (s) будет определена, если из графа состояний будут найдены степени тип полиномов числителя и знаменателя, а также коэффициенты B ij (j = 0,1,2,..., m ) и А i (i = 0,1, 2,..., n -1).

Первоначально рассмотрим методику определения P i (s) графа состояний только таких систем, в графе состояний которых отсутствуют переходы через состояния. К ним относятся все неизбыточные системы, резервированные системы при общем резервировании с целой и дробной кратностью, резервированные системы любой структуры с обслуживанием отказавших устройств в последовательности, обратной их поступлению в ремонт. К указанному классу систем относятся также некоторые резервированные системы с равнонадежными устройствами при различной дисциплине их обслуживания.

Функционирование системы описывается дифференциальными уравнениями, число которых равно числу узлов графа. Это значит, что главный определитель системы Δ(s) в общем случае будет полиномом n -й степени, где n - число узлов графа состоянии. Легко показать, что полином знаменателя не содержит свободного члена. Действительно, т.к. то знаменатель функции P i (s) должен содержать s в качестве сомножителя, в противном случае финальная вероятность P i (∞) будет равна нулю. Исклю­чением являются случаи, когда число ремонтов ограничено.

Степень полинома числителя Δ i находится из выражения:

m i = n - 1 – l i ,

где n - число узлов графа состояний; l i - число переходов из начального состояния системы, определенного начальными условиями ее функционирования, в состояние i по кратчайшему пути.

Если начальным состоянием системы является состояние, когда все устройства исправны, то l i - номер уровня состояния i , т.е. l i равно минимальному числу отказавших устройств системы в состоянии i . Таким образом, степень полинома числителя вероятности Р i (s) пребывания системы в i -м состоянии зависит от номера состояния i и от начальных условий. Так как число переходов l i может быть 0,1,2,..., n -1, то степень полинома Δ i (s) на основании (5.14) также может принимать значения m i = 0,1,2,..., n -1.

Метод основан на математическом аппарате алгебры логики. Расчет надежности системы управления предполагает определение связи между сложным событием (отказ системы) и событиями, от которых оно зависит (отказы элементов системы). Следовательно, расчеты на надежность основаны на проведении операций с событиями и высказываниями, в качестве которых принимаются утверждения о работоспособности или отказе элемента (системы). Каждый элемент системы представляется логической переменной, принимающей значение 1 или 0.

События и высказывания при помощи операций дизъюнкции, конъюнкции и отрицания объединяются в логические уравнения, соответствующие условию работоспособности системы. Составляется логическая функция работоспособности. Расчет, основанный на непосредственном использовании логических уравнений, называется логико-вероятностным и выполняется в семь этапов:

1. Словесная формулировка условий работоспособности объекта. Описывается зависимость работоспособности информационной системы от состояния ее отдельных элементов.

2. Составление логической функции работоспособности. Представляет собой логическое уравнение, соответствующее условию работоспособности системы управления

которое выражено в дизъюнктивной форме, например:

где x i – условие работоспособности i- го элемента Fл; X i = 1 – работоспособное состояние, X i = 0 – неработоспособное состояние.

3. Приведение логической функции работоспособности F Л к ортогональной бесповторной форме F ЛО. Сложную логическую функцию работоспособности необходимо привести к ортогональной бесповторной форме.

Функция вида (2.2) называется ортогональной, если все ее члены D i попарно ортогональны (то есть, их произведение равно нулю), и бесповторной, если каждый ее член D i состоит из букв х i , с разными номерами (то есть отсутствуют повторяющиеся аргументы), например: произведение элементарных конъюнкций х 1 , х 2 , x 4 и х 3 , x 2 равно нулю, так как одна из них содержит x 2 , а другая – x 2 , следовательно, они ортогональны; D 1 = x 1 ×x 2 ×x 2 , где x 2 и x 2 имеют один и тот же номер, поэтому член D 1 не является бесповторным.

– ортогональная бесповторная форма;

– ортогональная, но не бесповторная форма.

Функцию F л можно преобразовать к ортогональной бесповторной форме F ло, используя законы и правила преобразования сложных высказываний. При расчетах наиболее употребительны правила:

1) x 1 ×x 2 = x 2 ×x 1 ;

4. Арифметизация F ло. По найденной ортогональной бесповторной логической функции работоспособности F ЛО определяется арифметическая функция F a (2.3).

где A i – арифметическая форма членов D i функции F ло.
Арифметизация членов D i , в общем виде содержащих операции дизъюнкции, конъюнкции и отрицания, осуществляется заменой логических операций арифметическими по правилам:

5. Определение вероятности безотказной работы системы.
Вероятность безотказной работы системы устанавливается как вероятность истинности логической функции работоспособности, представленной в ортогональной бесповторной форме, и вычисляется как сумма вероятностей истинности всех ортогональных членов этой функции алгебры логики. Все события (высказывания) заменяются их вероятностями (вероятностями безотказной работы соответствующих элементов).

электроснабжения с помощью дерева отказов

Логико-вероятностный метод с использованием дерева отказов является дедуктивным (от общего к частному) и применяется в тех случаях, когда число различных отказов системы относительно невелико. Применение дерева отказов для описания причин отказа системы облегчает переход от общего определения отказа к частным определениям отказов и режимов работы её элементов, понятным специалистам-разработчикам как самой системы, так и элементов. Переход от дерева отказов к логической функции отказа открывает возможности для анализа причин отказа системы на формальной основе. Логическая функция отказа позволяет получить формулы для аналитического расчёта частоты и вероятности отказов системы по известной частоте и вероятностям отказов элементов. Использование аналитических выражений при расчёте показателей надёжности даёт основание к применению формул теории точности для оценки среднеквадратической погрешности результатов.

Отказ функционирования объекта как сложное событие является суммой события отказа работоспособности и события , состоящего в появлении критических внешних воздействий. Условие отказа функционирования системы формулируется специалистами в области конкретных систем на основе технического проекта системы и анализа её функционирования при возникновении различных событий при помощи высказываний .

Высказывания могут быть конечными, промежуточными, первичными, простыми, сложными. Простое высказывание относится к событию или состоянию, которые сами не рассматриваются ни как логическая сумма «ИЛИ», ни как логическое произведение «И» других событии или состояний. Сложное высказывание, представляющее собой дизъюнкцию нескольких высказываний (простых или сложных), обозначается оператором «ИЛИ», связывающим высказывания низшего уровня с высказываниями высшего уровня (рис.3.15,а). Сложное высказывание, представляющее собой конъюнкцию нескольких высказываний (простых или сложных), обозначается оператором «И», связывающим высказывания низшего уровня с высказываниями высшего уровня (рис.3.15,б).

Рис.3.15. Элементы представления логических схем

Высказывания удобно кодировать так, чтобы по коду можно было судить о том, простое оно или сложное, на каком уровне от конечного расположено и что собой представляет (событие, состояние, отказ срабатывания, тип элемента).

В теории графов деревом называется связный граф, не содержащий замкнутых контуров. Деревом отказов называют логическое дерево (рис. 3.16), в котором дуги представляют события отказа на уровне системы, подсистем или элементов, а вершины – логические операции, связывающие исходные и результирующие события отказов.

Рис. 3.16. Пример построения дерева отказов

Построение дерева отказов начинается с формулировки конечного высказывания об отказе системы. Для характеристики безотказности системы конечное высказывание относят к событию, которое приводит к нарушению функционирования в рассматриваемом интервале времени, при заданных условиях. То же для характеристики готовности.

Пример 8 . Построим дерево отказов для схемы сети, приведенной на рис.3.17.

Рис.3.17. Схема сети

Подстанции В и С питаются от подстанции А . Конечным событием дерева отказов является отказ системы в целом. Этот отказ определяется как событие, заключающееся в том, что

1) либо подстанция В , либо подстанция С полностью теряют питание;

2) мощность для питания суммарной нагрузки подстанций В и С приходится передавать по одной-единственной линии.

Исходя из определения конечного события и принципиальной схемы системы, строим дерево отказов (вниз от конечного события) (рис. 3.18). Цель анализа дерева отказов состоит в том, чтобы определить вероятность конечного события. Поскольку конечное событие есть отказ системы, анализ дает вероятность Р (F ).

Метод анализа основан на нахождении и расчете множеств минимальных сечений. Сечением называют такое множество элементов, суммарный отказ которых приводит к отказу системы. Минимальное сечение – такое множество элементов, из которого нельзя удалить ни одного элемента, иначе оно перестаёт быть сечением.

Передвигаясь на один уровень ниже от вершинного (конечного) события, проходим через узел «ИЛИ», который указывает на существование трёх сечений: {P }, {Q }, {R } (Р, Q , R – события отказов). Каждое из этих сечений может быть разделено далее на большее число сечений, но может выясниться, что отказ сечений обуславливается несколькими событиями, в зависимости от того, какой тип логического узла встречается на пути следования.

Рис.3.18. Дерево отказов системы по схеме рис. 3.17:

–отказы подсистем, которые можно анализировать далее;

Например, {Q} сначала превращается в сечение {3,Т }, затем Т разделяется на сечения {Х,У }, в результате вместо одного сечения {3,Т } появляются два: {3,X }, {3,У }.

На каждом из последующих шагов выявляются множества сечений:

Минимальными сечениями являются выделенные сечения {3,4,5}, {2,3}, {1,3}, {1,2}. Сечение {1,2,3} не минимальное, поскольку {1,2} – тоже сечение. На последнем шаге множества сечений состоят исключительно из элементов.