Решить уравнение 2 4. Решение квадратных уравнений

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

4x 3 - 19x 2 + 19x + 6 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 6 являются ±1, ±2, ±3, ±6.

1: 4 - 19 + 19 + 6 = 10 ⇒ число 1

-1: -4 - 19 - 19 + 6 = -36 ⇒ число -1 не является корнем многочлена

2: 4 ∙ 8 - 19 ∙ 4 + 19 ∙ 2 + 6 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

4 -19 19 6
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

4 -19 19 6
2 4
Во вторую ячейку второй строки запишем число 1, просто перенеся его из соответствующей ячейки первой строки.
4 -19 19 6
2 4 -11
2 ∙ 4 - 19 = -11
4 -19 19 6
2 4 -11 -3
2 ∙ (-11) + 19 = -3
4 -19 19 6
2 4 -11 -3 0
2 ∙ (-3) + 6 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

Таким образом мы исходный многочлен разложили на множители:

4x 3 - 19x 2 + 19x + 6 = (x - 2)(4x 2 - 11x - 3)

И теперь, всего лишь, осталось найти корни квадратного уравнения

4x 2 - 11x - 3 = 0
D = b 2 - 4ac = (-11) 2 - 4 ∙ 4 ∙ (-3) = 169
D > 0 ⇒ уравнение имеет 2 корня

Мы нашли все корни уравнения.

I. Линейные уравнения

II. Квадратные уравнения

ax 2 + bx + c = 0, a ≠ 0, иначе уравнение становится линейным

Корни квадратного уравнения можно вычислять различными способами, например:

Мы хорошо умеем решать квадратные уравнения. Многие уравнения более высоких степеней можно привести к квадратным.

III. Уравнения, приводимые к квадратным.

замена переменной: а) биквадратное уравнение ax 2n + bx n + c = 0, a ≠ 0, n ≥ 2

2) симметрическое уравнение 3 степени – уравнение вида

3) симметрическое уравнение 4 степени – уравнение вида

ax 4 + bx 3 + cx 2 + bx + a = 0, a ≠ 0, коэффициенты a b c b a или

ax 4 + bx 3 + cx 2 – bx + a = 0, a ≠ 0, коэффициенты a b c (–b) a

Т.к. x = 0 не является корнем уравнения, то возможно деление обеих частей уравнения на x 2 , тогда получаем: .

Произведя замену решаем квадратное уравнение a (t 2 – 2) + bt + c = 0

Например, решим уравнение x 4 – 2x 3 – x 2 – 2x + 1 = 0, делим обе части на x 2 ,

, после замены получаем уравнение t 2 – 2t – 3 = 0

– уравнение не имеет корней.

4) Уравнение вида (x – a )(x – b )(x – c )(x – d ) = Ax 2 , коэффициенты ab = cd

Например, (x + 2 )(x +3 )(x + 8 )(x + 12 ) = 4x 2 . Перемножив 1–4 и 2–3 скобки, получим (x 2 + 14x + 24)(x 2 +11x + 24) = 4x 2 , разделим обе части уравнения на x 2 , получим:

Имеем (t + 14)(t + 11) = 4.

5) Однородное уравнение 2 степени – уравнение вида Р(х,у) = 0, где Р(х,у) – многочлен, каждое слагаемое которого имеет степень 2.

Ответ: -2; -0,5; 0

IV. Все приведенные уравнения узнаваемы и типичны, а как быть с уравнениями произвольного вида?

Пусть дан многочлен P n (x ) = a n x n + a n-1 x n-1 + ...+a 1 x + a 0 , где a n ≠ 0

Рассмотрим метод понижения степени уравнения.

Известно, что, если коэффициенты a являются целыми числами и a n = 1 , то целые корни уравнения P n (x ) = 0 находятся среди делителей свободного члена a 0 . Например, x 4 + 2x 3 – 2x 2 – 6x + 5 = 0, делителями числа 5 являются числа 5; –5; 1; –1. Тогда P 4 (1) = 0, т.е. x = 1 является корнем уравнения. Понизим степень уравнения P 4 (x ) = 0 с помощью деления “уголком” многочлена на множитель х –1, получаем

P 4 (x ) = (x – 1)(x 3 + 3x 2 + x – 5).

Аналогично, P 3 (1) = 0, тогда P 4 (x ) = (x – 1)(x – 1)(x 2 + 4x +5), т.е. уравнение P 4 (x) = 0 имеет корни x 1 = x 2 = 1. Покажем более короткое решение этого уравнения (с помощью схемы Горнера).

1 2 –2 –6 5
1 1 3 1 –5 0
1 1 4 5 0

значит, x 1 = 1 значит, x 2 = 1.

Итак, (x – 1) 2 (x 2 + 4x + 5) = 0

Что мы делали? Понижали степень уравнения.

V. Рассмотрим симметрические уравнения 3 и 5 степени.

а) ax 3 + bx 2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.

б) ax 5 + bx 4 + cx 3 + cx 2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.

Например, покажем решение уравнения 2x 5 + 3x 4 – 5x 3 – 5x 2 + 3x + = 0

2 3 –5 –5 3 2
–1 2 1 –6 1 2 0
1 2 3 –3 –2 0
1 2 5 2 0

x = –1

Получаем (x – 1) 2 (x + 1)(2x 2 + 5x + 2) = 0. Значит, корни уравнения: 1; 1; –1; –2; –0,5.

VI. Приведем список различных уравнений для решения в классе и дома.

Предлагаю читателю самому решить уравнения 1–7 и получить ответы…

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда
1) a n a m = a n+m

2) \(\frac{a^n}{a^m} = a^{n-m} \)

3) (a n) m = a nm

4) (ab) n = a n b n

5) \(\left(\frac{a}{b} \right)^n = \frac{a^n}{b^n} \)

7) a n > 1, если a > 1, n > 0

8) a n 1, n
9) a n > a m , если 0

В практике часто используются функции вида y = a x , где a - заданное положительное число, x - переменная. Такие функции называют показательными . Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени - заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а - заданное число, a > 0, \(a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции - множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции - множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \(a \neq 1\), не имеет корней, если \(b \leq 0\), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = a x при a > 0 и при 0 Использовав рассмотренные свойства отметим, что график функции у = a x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \(a \neq 1\), х - неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \(a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x 3 x = 576
Так как 2 3x = (2 3) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 - 2 3 x - 2 = 25
Вынося в левой части за скобки общий множитель 3 х - 2 , получаем 3 х - 2 (3 3 - 2) = 25, 3 х - 2 25 = 25,
откуда 3 х - 2 = 1, x - 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как \(7^x \neq 0 \) , то уравнение можно записать в виде \(\frac{3^x}{7^x} = 1 \), откуда \(\left(\frac{3}{7} \right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9 х - 4 3 х - 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 - 4t - 45 = 0. Решая это уравнение, находим его корни: t 1 = 9, t 2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 2 х + 1 + 2 5 x - 2 = 5 х + 2 х - 2
Запишем уравнение в виде
3 2 х + 1 - 2 x - 2 = 5 х - 2 5 х - 2 , откуда
2 х - 2 (3 2 3 - 1) = 5 х - 2 (5 2 - 2)
2 х - 2 23 = 5 х - 2 23
\(\left(\frac{2}{5} \right) ^{x-2} = 1 \)
x - 2 = 0
Ответ х = 2

Решить уравнение 3 |х - 1| = 3 |х + 3|
Так как 3 > 0, \(3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х - 1) 2 = (х + 3) 2 , откуда
х 2 - 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 - корень исходного уравнения.
Ответ х = -1


Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.